\(\int \frac {(b d+2 c d x)^{9/2}}{(a+b x+c x^2)^{5/2}} \, dx\) [1396]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 258 \[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}+\frac {56 c \left (b^2-4 a c\right )^{3/4} d^{9/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{\sqrt {a+b x+c x^2}}-\frac {56 c \left (b^2-4 a c\right )^{3/4} d^{9/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{\sqrt {a+b x+c x^2}} \]

[Out]

-2/3*d*(2*c*d*x+b*d)^(7/2)/(c*x^2+b*x+a)^(3/2)-28/3*c*d^3*(2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^(1/2)+56*c*(-4*a*c
+b^2)^(3/4)*d^(9/2)*EllipticE((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2)
)^(1/2)/(c*x^2+b*x+a)^(1/2)-56*c*(-4*a*c+b^2)^(3/4)*d^(9/2)*EllipticF((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d
^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/(c*x^2+b*x+a)^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {700, 705, 704, 313, 227, 1213, 435} \[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {56 c d^{9/2} \left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{\sqrt {a+b x+c x^2}}+\frac {56 c d^{9/2} \left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{\sqrt {a+b x+c x^2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}-\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}} \]

[In]

Int[(b*d + 2*c*d*x)^(9/2)/(a + b*x + c*x^2)^(5/2),x]

[Out]

(-2*d*(b*d + 2*c*d*x)^(7/2))/(3*(a + b*x + c*x^2)^(3/2)) - (28*c*d^3*(b*d + 2*c*d*x)^(3/2))/(3*Sqrt[a + b*x +
c*x^2]) + (56*c*(b^2 - 4*a*c)^(3/4)*d^(9/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt
[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/Sqrt[a + b*x + c*x^2] - (56*c*(b^2 - 4*a*c)^(3/4)*d^(9/2)
*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d
])], -1])/Sqrt[a + b*x + c*x^2]

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 313

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Dist[-q^(-1), Int[1/Sqrt[a + b*x^4]
, x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 700

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(d + e*x)^(m - 1)*(
(a + b*x + c*x^2)^(p + 1)/(b*(p + 1))), x] - Dist[d*e*((m - 1)/(b*(p + 1))), Int[(d + e*x)^(m - 2)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2
*p + 3, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]

Rule 704

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4/e)*Sqrt[-c/(b^2 - 4*
a*c)], Subst[Int[x^2/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 705

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[(-c)*((a + b*x +
c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*
c)) - c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}+\frac {1}{3} \left (14 c d^2\right ) \int \frac {(b d+2 c d x)^{5/2}}{\left (a+b x+c x^2\right )^{3/2}} \, dx \\ & = -\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}+\left (28 c^2 d^4\right ) \int \frac {\sqrt {b d+2 c d x}}{\sqrt {a+b x+c x^2}} \, dx \\ & = -\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}+\frac {\left (28 c^2 d^4 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac {\sqrt {b d+2 c d x}}{\sqrt {-\frac {a c}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {c^2 x^2}{b^2-4 a c}}} \, dx}{\sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}+\frac {\left (56 c d^3 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{\sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}-\frac {\left (56 c \sqrt {b^2-4 a c} d^4 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{\sqrt {a+b x+c x^2}}+\frac {\left (56 c \sqrt {b^2-4 a c} d^4 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{\sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}-\frac {56 c \left (b^2-4 a c\right )^{3/4} d^{9/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{\sqrt {a+b x+c x^2}}+\frac {\left (56 c \sqrt {b^2-4 a c} d^4 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}}{\sqrt {1-\frac {x^2}{\sqrt {b^2-4 a c} d}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{\sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{7/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {28 c d^3 (b d+2 c d x)^{3/2}}{3 \sqrt {a+b x+c x^2}}+\frac {56 c \left (b^2-4 a c\right )^{3/4} d^{9/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{\sqrt {a+b x+c x^2}}-\frac {56 c \left (b^2-4 a c\right )^{3/4} d^{9/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{\sqrt {a+b x+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.09 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.47 \[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {16 d^3 (d (b+2 c x))^{3/2} \left (b^2-3 b c x-c \left (7 a+3 c x^2\right )+14 c (a+x (b+c x)) \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{2},\frac {7}{4},\frac {(b+2 c x)^2}{b^2-4 a c}\right )\right )}{3 (a+x (b+c x))^{3/2}} \]

[In]

Integrate[(b*d + 2*c*d*x)^(9/2)/(a + b*x + c*x^2)^(5/2),x]

[Out]

(-16*d^3*(d*(b + 2*c*x))^(3/2)*(b^2 - 3*b*c*x - c*(7*a + 3*c*x^2) + 14*c*(a + x*(b + c*x))*Sqrt[(c*(a + x*(b +
 c*x)))/(-b^2 + 4*a*c)]*Hypergeometric2F1[3/4, 5/2, 7/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/(3*(a + x*(b + c*x))^(
3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(858\) vs. \(2(218)=436\).

Time = 5.02 (sec) , antiderivative size = 859, normalized size of antiderivative = 3.33

method result size
default \(\frac {2 \sqrt {d \left (2 c x +b \right )}\, \left (168 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) a \,c^{3} x^{2}-42 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) b^{2} c^{2} x^{2}+168 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) a b \,c^{2} x -42 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) b^{3} c x +168 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) a^{2} c^{2}-42 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) a \,b^{2} c -72 c^{4} x^{4}-144 b \,c^{3} x^{3}-56 x^{2} c^{3} a -94 b^{2} c^{2} x^{2}-56 a b \,c^{2} x -22 b^{3} c x -14 a \,b^{2} c -b^{4}\right ) d^{4}}{3 \left (2 c x +b \right ) \left (c \,x^{2}+b x +a \right )^{\frac {3}{2}}}\) \(859\)
elliptic \(\text {Expression too large to display}\) \(1108\)

[In]

int((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(d*(2*c*x+b))^(1/2)*(168*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^
(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/
2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*c^3*x^2-42*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^
(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE
(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*b^2*c^2*x^2+168*((b+2*c*x+(-4*a*
c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(
-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2)
)*a*b*c^2*x-42*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*(
(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^
2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*b^3*c*x+168*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+
b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+
(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^2*c^2-42*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*
c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(
1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*b^2*c-72*c^4*x^4
-144*b*c^3*x^3-56*x^2*c^3*a-94*b^2*c^2*x^2-56*a*b*c^2*x-22*b^3*c*x-14*a*b^2*c-b^4)*d^4/(2*c*x+b)/(c*x^2+b*x+a)
^(3/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.89 \[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {2 \, {\left (84 \, \sqrt {2} {\left (c^{3} d^{4} x^{4} + 2 \, b c^{2} d^{4} x^{3} + 2 \, a b c d^{4} x + a^{2} c d^{4} + {\left (b^{2} c + 2 \, a c^{2}\right )} d^{4} x^{2}\right )} \sqrt {c^{2} d} {\rm weierstrassZeta}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right )\right ) + {\left (36 \, c^{3} d^{4} x^{3} + 54 \, b c^{2} d^{4} x^{2} + 4 \, {\left (5 \, b^{2} c + 7 \, a c^{2}\right )} d^{4} x + {\left (b^{3} + 14 \, a b c\right )} d^{4}\right )} \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a}\right )}}{3 \, {\left (c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x + {\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}\right )}} \]

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="fricas")

[Out]

-2/3*(84*sqrt(2)*(c^3*d^4*x^4 + 2*b*c^2*d^4*x^3 + 2*a*b*c*d^4*x + a^2*c*d^4 + (b^2*c + 2*a*c^2)*d^4*x^2)*sqrt(
c^2*d)*weierstrassZeta((b^2 - 4*a*c)/c^2, 0, weierstrassPInverse((b^2 - 4*a*c)/c^2, 0, 1/2*(2*c*x + b)/c)) + (
36*c^3*d^4*x^3 + 54*b*c^2*d^4*x^2 + 4*(5*b^2*c + 7*a*c^2)*d^4*x + (b^3 + 14*a*b*c)*d^4)*sqrt(2*c*d*x + b*d)*sq
rt(c*x^2 + b*x + a))/(c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + a^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((2*c*d*x+b*d)**(9/2)/(c*x**2+b*x+a)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\int { \frac {{\left (2 \, c d x + b d\right )}^{\frac {9}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^(9/2)/(c*x^2 + b*x + a)^(5/2), x)

Giac [F]

\[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\int { \frac {{\left (2 \, c d x + b d\right )}^{\frac {9}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^(9/2)/(c*x^2 + b*x + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\int \frac {{\left (b\,d+2\,c\,d\,x\right )}^{9/2}}{{\left (c\,x^2+b\,x+a\right )}^{5/2}} \,d x \]

[In]

int((b*d + 2*c*d*x)^(9/2)/(a + b*x + c*x^2)^(5/2),x)

[Out]

int((b*d + 2*c*d*x)^(9/2)/(a + b*x + c*x^2)^(5/2), x)